# Vanishing Volume: The Curious Case of The Sphere

What happens to the volume of a sphere in higher dimensions? To answer this question, we will focus our attention on the unit -sphere in Euclidean space. That is the sphere in (-space) with radius centered at the origin. For example, in , the unit sphere is the collection , which satisfies the equation […]

Read more "Vanishing Volume: The Curious Case of The Sphere"

# The Volume of a Sphere (without Calculus)

This is the third and final post on the volume of a sphere. The other two can be accessed by the following links, “Coordinates in 3-Space” and “The Volume of a Sphere with Calculus” As the title suggests, this will be a derivation without the use of Calculus. This proof is Greek in origin, in […]

Read more "The Volume of a Sphere (without Calculus)"

# Coordinates in 3-Space

This post was inspired by a calculus student and will be in three parts: This on the development of different coordinate systems, one with calculus and one without. We are taught in school that the volume of a sphere with radius is . In this post we shall look at a development in calculus that will not […]